sf/pm
16.07.13 / 14:36
Nachricht

So sieht Botox aus

Forscher der Medizinischen Hochschule Hannover entschlüsseln gemeinsam mit amerikanischen Kollegen die Funktion und die komplizierte Raumstruktur des Neurotoxins.



Raumstruktur des Botulinum-Komplexes Rummel/MHH

Wissenschaftler der Medizinischen Hochschule Hannover (MHH) haben zusammen mit amerikanischen Kollegen aufgeklärt, wie das Bakterium Clostridium botulinum sein Nervengift in das Blut des Menschen schleust. Das Team um Dr. Andreas Rummel vom Institut für Toxikologie veröffentlichte gemeinsam mit Prof. Rongsheng Jin, University of California, Irvine, seine Ergebnisse in der Fachzeitschrift „PLOS Pathogens“.

Gegen Bewegungsstörungen und Falten

Mit Botulinumtoxin werden schwere Bewegungsstörungen erfolgreich behandelt – als „Botox“ spielt es bei kosmetischer Faltenglättung eine bekannte Rolle. Wie aber der Wirkstoff des bereits 1989 als Arzneimittel für seltene Leiden (orphan drug) zugelassenen Medikaments aussieht, war bis dato unbekannt.

Ursprünglich bekannt wurde das Botulinum-Toxin durch die heutzutage seltene Krankheit Botulismus, eine tödliche Lebensmittelvergiftung. Dabei gelangt dieses hochmolekulare Eiweiß ins Blut. „Vergangenes Jahr konnten wir aufklären, wie ein Schutzprotein das Toxin einpackt und so gegen das feindliche Milieu in Magen und Dünndarm beschützt“, sagt Rummel, „jetzt verstehen wir auch, wie es an der Dünndarmwand andockt und das Toxin in die Blutbahn entlässt.“

Struktur erinnert an das Mondlandemodul der Apollo-Mission

Rummel und sein Team fanden heraus, dass sich dazu drei weitere Proteine zu einem zwölfteiligen Subkomplex zusammenlagern. „Die Struktur erinnert entfernt an das Mondlandemodul der Apollo-Mission“, erklärt Rummel. Dieser sogenannte HA-Komplex bindet über bis zu neun Kontaktpunkte an Zucker auf der Oberfläche des Dünndarmepithels und öffnet anschließend Zell-Zell-Kontakte, um das Toxin effizient in die Blutbahn gelangen zu lassen.

Den Wissenschaftlern gelang es mithilfe von Elektronenmikroskopie und Röntgenstrukturanalysen, die Raumstruktur des 14-teiligen Komplexes aufzuklären, der aus mehr als 6500 Aminosäuren besteht. Zellbiologische Experimente konnten die funktionelle Rolle der einzelnen Bestandteile ermitteln.

Die Erkenntnis der Bindung an Zuckermoleküle erlaubte es den Forschern, Substanzen in Mäusen erfolgreich zu testen, die die Resorption des Toxins verhindern. „Dies ist eine völlig neue Therapiestrategie gegen Botulismus, die im Falle einer bioterroristischen Bedrohung mit dem Botulinum-Neurotoxin auch präventiv eingesetzt werden könnte“ erläutert Rummel.


Mehr zum Thema


Werblicher Inhalt