Technische Universität (TU) Berlin

Tumore aus dem Biodrucker erlauben neue Tests von Krebsmedikamenten

Mit Biotinte aus Alginat und menschlichen Zellen haben Forschende ein 3-D-Modell einer Krebsmetastase samt umgebendem gesundem Gewebe ausgedruckt. Dies erlaubt bessere Tests von potenziellen Krebsmedikamenten.

Der Erstautor der Studie, Dongwei Wu, untersucht das Krebsmodell am Fluoreszenzmikroskop. Auf dem Bildschirm zu sehen sind vom Krebsmedikament abgetötete Zellen in Rot, die lebenden, gesunden Zellen in Grün. TU Berlin / Dominic Simon

Die Forschenden verwendeten dafür einen handelsüblichen Biodrucker, so dass das Tumormodell von anderen Arbeitsgruppen leicht übernommen werden kann, heißt es. Im Gegensatz zu Tierversuchen sei es bei dem neuen Verfahren möglich, sowohl den Tumor als auch das umliegende Gewebe aus menschlichen Zellen aufzubauen. Dies sei ein großer Vorteil, denn so lasse sich bei potenziellen Krebsmedikamenten nicht nur untersuchen, ob sie den Tumor wie erhofft zerstören, sondern auch, welche Auswirkungen die Substanz auf das umliegende, gesunde Gewebe hat.

Dass der Kampf gegen den Krebs trotz jahrzehntelanger, weltweiter Anstrengungen nur im Schneckentempo vorangeht, liegt auch an der schlechten Aussagekraft von Tierversuchen. So scheitern 97 Prozent aller im Tierversuch als aussichtsreich für ein Krebsmedikament erkannten Substanzen in der klinischen Erprobung am Menschen. Offensichtlich unterscheiden sich die komplexen biologischen Vorgänge in Tieren und Menschen häufig zu sehr, um übertragbare Aussagen machen zu können, schreiben die Forschenden. Beim sogenannten Xenograft-Modell können zwar mittlerweile auch menschliche Tumorzellen in Tiere eingebracht und deren Bekämpfung in einem lebenden Organismus untersucht werden – dabei muss aber das Immunsystem der Tiere unterdrückt werden, damit sie die fremden Zellen nicht abstoßen. Zudem liegen die menschlichen Tumorzellen dann immer noch in einer Umgebung aus tierischen Zellen und nicht in gesundem, menschlichem Gewebe.

Technik könnte Tierversuche vermeiden helfen

„Diese Situation stellt also nur sehr unzureichend die realen Bedingungen im Körper nach”, erklärt Prof. Dr. Jens Kurreck, Leiter des Fachgebiets für Angewandte Biochemie der TU Berlin, wo die Studie durchgeführt wurde. „Dies wollten wir in unserem gedruckten 3-D-Tumormodell verbessern und damit gleichzeitig zur Reduzierung von Tierversuchen beitragen.” Die Forschenden haben sich für ihr Modell eine der häufigsten Krebserkrankungen im Kindesalter vorgenommen, das sogenannte Neuroblastom. Es entsteht häufig in der Nebenniere oder an der Wirbelsäule und bildet auch Metastasen. Diese können dann meist nicht mehr operativ entfernt, sondern müssen bestrahlt oder durch Medikamente bekämpft werden. „Dabei kommt es darauf an, dass das Medikament auch wirklich nur den Tumor schädigt und nicht das umliegende Gewebe”, sagt Kurreck. Das Problem: „Der Tumor und seine Umgebung stehen durch Signalmoleküle in Kontakt. Dadurch kann sich das Verhalten sowohl der Tumor- wie der gesunden Zellen verändern. Ein realistisches Experiment muss also beide Zellarten nebeneinander beinhalten.”

Der Biodrucker wird für den Druck eingerichtet. | TU Berlin

Die Forschenden haben deshalb zwei Modellvarianten etabliert: einmal eine gedruckte Gitterstruktur aus jeweils nur einer Zellart. Hier ist eine Versorgung der Zellen durch eine Nährlösung über die Löcher im Gitter sehr einfach. Diese Struktur kann zum schnellen Testen einer Substanz verwendet werden. Für die Simulation einer Neuroblastom-Metastase hingegen haben die Wissenschaftlerinnen und Wissenschaftler eine Struktur aus konzentrischen Ringen gedruckt, deren innerer Kern aus Tumorzellen besteht, die äußeren Ringe hingegen aus gesunden Zellen. „Hier war die Herausforderung, dass die Nährlösung beide Zellarten am Leben erhalten muss. Zudem sollte natürlich auch die gesamte Ringstruktur während des Experiments über 72 Stunden stabil bleiben”, erklärt Kurreck. Für den Druck werden die Zellen mit einem Gel-artigen Inhaltsstoff von Algen, einem Alginat, vermischt. Nach dem Aufspritzen auf eine Glasoberfläche härtet es durch Zugabe einer Lösung von Calcium-Ionen aus. Beim Druckvorgang mit der Spritzdüse kommt es darauf an, dass die Zellen durch die entstehende Kraftwirkung nicht zerstört werden.

3-D-Druck reagiert zehnmal spezifischer als Petrischalen-Tests

Als Zellmaterial verwendete die Arbeitsgruppe um Kurreck Neuroblastomzellen sowie gesunde Nierenzellen. „Das Modell kann aber auch leicht auf andere Zelltypen angepasst werden”, betont er. Für die Substanzprüfung nutzten die Forschenden das Krebsmedikament Panobinostat sowie das Zellgift Blasticidin, das als Antibiotikum verwendet wird. Ob die Zellen noch leben oder schon abgestorben sind, untersuchten sie mit Hilfe von grün beziehungsweise rot fluoreszierenden Markern, die je nach ihrer Reaktion mit dem Zellstoffwechsel leuchten.

Das Ergebnis: Panobinostat wurde in seiner Eigenschaft als Medikament richtig erkannt, es zerstörte nur die Krebszellen. Blasticidin dagegen hinterließ als allgemeines Zellgift keine überlebenden Zellen. Bei einem Vergleich mit herkömmlichen 2-D-Tests in Petrischalen, bei denen Tumor- und gesunde Zellen unstrukturiert verteilt sind, zeigte sich zudem: Die neue 3-D-Druck-Methode reagiert zehnmal spezifischer auf die erprobten Substanzen als die 2-D-Petrischalen-Tests.

Auch künstliche Blutgefäẞe sind möglich

„Ein Vorteil unseres Modells ist, dass es nicht auf Innovationen beim Druckgerät beruht”, erklärt Kurreck. Es lasse sich deshalb von jeder Arbeitsgruppe mit jedem handelsüblichen Biodrucker verwenden. Erweiterungen des Modells, die auch künstliche Blutgefäße beinhalten, sind bereits in der Erprobung. Zudem wären auch Tumormodelle möglich, die neben normalen Gewebe- auch Immunzellen beinhalten. „Diese sind bereits in anderen Biodruck-Verfahren erfolgreich verwendet worden”, sagt Kurreck. „Immunologische 3-D-Tumormodelle wären ein großer Fortschritt, denn gerade Immuntherapien lassen sich in Tierversuchen nur sehr schwer umsetzen."

Wu, D. et al.: „Bioprinted Cancer Model of Neuroblastoma in a Renal Microenvironment as an Efficiently Applicable Drug Testing Platform”. Int. J. Mol. Sci. 2022, 23, 122. https://doi.org/10.3390/ijms23010122

68132716798817679882167988226813272 6813273 6798825
preload image 1preload image 2preload image 3preload image 4preload image 5preload image 6preload image 7preload image 8preload image 9preload image 10preload image 11preload image 12preload image 13preload image 14preload image 15preload image 16preload image 17preload image 18preload image 19preload image 20preload image 21preload image 22preload image 23preload image 24preload image 25preload image 26preload image 27preload image 28preload image 29preload image 30preload image 31preload image 32preload image 33preload image 34preload image 35preload image 36preload image 37preload image 38preload image 39preload image 40preload image 41preload image 42preload image 43preload image 44preload image 45preload image 46preload image 47preload image 48preload image 49preload image 50preload image 51preload image 52preload image 53preload image 54preload image 55preload image 56preload image 57preload image 58preload image 59preload image 60preload image 61preload image 62preload Themeimage 0preload Themeimage 1preload Themeimage 2preload Themeimage 3preload Themeimage 4preload Themeimage 5preload Themeimage 6preload Themeimage 7preload Themeimage 8preload Themeimage 9preload Themeimage 10preload Themeimage 11preload Themeimage 12preload Themeimage 13preload Themeimage 14preload Themeimage 15preload Themeimage 16preload Themeimage 17preload Themeimage 18preload Themeimage 19preload Themeimage 20preload Themeimage 21preload Themeimage 22preload Themeimage 23preload Themeimage 24preload Themeimage 25preload Themeimage 26preload Themeimage 27preload Themeimage 28
Bitte bestätigen Sie
Nein
Ja
Information
Ok
loginform
Kommentarvorschau
Kommentarvorschau schliessen
Antwort abbrechen
Ihr Kommentar ist eine Antwort auf den folgenden Kommentar

Keine Kommentare