Medizin

Feinmotorik für Roboterhände

Neurowissenschaftler des Deutschen Primatenzentrums können Greifbewegungen der Hand durch die Aktivität verschiedener Gehirnzellen vorhersagen.

Neuronale Informationen können eines Tages auch für die Kontrolle von Handprothesen verwendet werden. Sebastian Lehm

Handbewegungen werden im Primatengehirn durch die Areale AIP, F5 und M1 gesteuert. Stefan Schaffelhofer

Schnürsenkel binden, den Kaffee umrühren, Briefe schreiben, Klavier spielen. Von alltäglichen bis hin zu anspruchsvollen Tätigkeiten: Unsere Hände benutzen wir so häufig wie kein zweites Körperteil. Durch die ausgeprägte Feinmotorik sind wir in der Lage, Greifbewegungen mit unterschiedlicher Präzision und Kraftverteilung anzuwenden.

Wie Handbewegungen im Gehirn geplant werden

Diese Fähigkeit ist ein grundlegendes Merkmal der Primatenhand. Wie Handbewegungen im Gehirn geplant werden, war bis jetzt noch weitgehend unklar. Stefan Schaffelhofer, Andres Agudelo-Toro und Hansjörg Scherberger vom Deutschen Primatenzentrum (DPZ) konnten mit ihrer jüngsten Forschung an Rhesusaffen zeigen, wie verschiedene Greifbewegungen im Gehirn gesteuert werden.

Anhand elektrophysiologischer Messungen in jenen Hirnarealen, die für die Planung und Umsetzung von Handbewegungen verantwortlich sind, konnten die Wissenschaftler eine Vielzahl von Handstellungen durch die Analyse genau dieser neuronalen Signale vorhersagen.

Die Grifftypen werden auf eine Roboterhand übertragen

In ersten Anwendungsversuchen konnten die so entschlüsselten Grifftypen auf eine Roboterhand übertragen werden. Die Ergebnisse der Studie sollen künftig in die Entwicklung von Neuroprothesen einfließen, um gelähmten Patienten die Wiedererlangung von Handfunktionen zu ermöglichen (The Journal of Neuroscience, 2015).

„Wir wollten herausfinden, wie verschiedene Handbewegungen vom Gehirn gesteuert werden und ob wir die Aktivität von Nervenzellen nutzen können, um unterschiedliche Grifftypen vorherzusagen“, sagt Schaffelhofer.

Im Rahmen seiner Doktorarbeit beschäftigt er sich intensiv mit jenen Gehirnarealen der Großhirnrinde, die für die Planung und Ausführung von Handbewegungen verantwortlich sind. Um die Regulierung verschiedener Greifbewegungen in den betreffenden Hirnregionen im Detail zu untersuchen, wurde die Aktivität von Nervenzellen aufgezeichnet.

Das steuert Gehirn die Greifbewegungen

Dazu trainierten die Forscher die Rhesusaffen darauf, 50 Objekte unterschiedlicher Form und Größe wiederholt zu greifen. Gleichzeitig wurden alle Finger- und Handbewegungen der Affen mithilfe eines elektromagnetischen Datenhandschuhs aufgezeichnet um die angewandten Grifftypen zu identifizieren und mit den neuronalen Signalen vergleichen zu können.

„Wir haben alle Objekte vor Beginn einer Greifbewegung beleuchtet, so dass die Affen sie sehen und deren Form erkennen konnten“, erklärt Schaffelhofer. „Die anschließende Greifbewegung fand dann mit kurzer Verzögerung im Dunkeln statt. So konnten wir die Reaktionen der Nervenzellen auf die visuellen Reize von den rein motorischen Signalen trennen und außerdem die Phase der Bewegungsplanung untersuchen.“

Auf die neuronalen Unterschiede kommt es an

Anhand der Aktivität der Nervenzellen, die während der Planung und Ausführung der Greifbewegungen gemessen wurde, konnten die Wissenschaftler anschließend Rückschlüsse auf die angewendeten Grifftypen ziehen. Die vorhergesagten Griffe wurden mit den tatsächlich im Versuch aufgezeichneten Handkonfigurationen abgeglichen.

„Die Aktivität der gemessenen Gehirnzellen ist stark vom angewandten Griff abhängig. Anhand dieser neuronalen Unterschiede, können wir berechnen, welche Handbewegung das Tier ausführt“, sagt Schaffelhofer. „In der Planungsphase lagen wir damit zu 86 Prozent richtig, in der Greifphase konnten wir die Bewegung zu 92 Prozent richtig bestimmen.“

Erkenntnisse werden querschnittsgelähmten Menschen nutzen

Die so entschlüsselten Handkonfigurationen wurden anschließend erfolgreich auf eine Roboterhand übertragen. Damit zeigten die Wissenschaftler, dass eine große Anzahl verschiedener Handstellungen mittels neuronaler Planungs- und Ausführungssignale erfasst und genutzt werden kann. Eine Erkenntnis, die künftig vor allem für querschnittsgelähmte Patienten, bei denen die Verbindung zwischen Gehirn und Gliedmaßen nicht mehr funktioniert, eine große Bedeutung hat.

„Die Ergebnisse unserer Studie sind sehr wichtig für die Entwicklung von neuronal gesteuerten Handprothesen. Sie zeigen, wo und vor allem wie das Gehirn Greifbewegungen steuert“, fasst Stefan Schaffelhofer zusammen. „Im Unterschied zu anderen Anwendungen ermöglicht unser Verfahren eine Vorhersage der Grifftypen bereits in der Planungsphase der Bewegung. In Zukunft könnten damit neuronale Schnittstellen generiert werden, die diese motorischen Signale auslesen, interpretieren und Prothesen steuern können.“

Schaffelhofer, S., Agudelo-Toro, A. and Scherberger, H. (2015): Decoding a wide range of hand configurations from macaque motor, premotor and parietal cortices. The Journal of Neuroscience 35(3):1068-1081

Weitere Bilder
Bilder schließen